Skip to contents

Input and pre-processing

Functions to input the data and prepare it for an analysis

create_corpus()
Create a corpus
chunk_texts()
Chunk a corpus
contentmask()
Content masking
tokenize_sents()
Tokenize to sentences

Authorship analysis functions

Functions to run an authorship analysis

delta()
Delta
impostors()
Impostors Method
lambdaG()
Apply the LambdaG algorithm
ngram_tracing()
N-gram tracing

Likelihood ratio

Functions to calibrate, interpret, and evaluate likelihood ratios

calibrate_LLR()
Calibrate scores into Log-Likelihood Ratios
density_plot()
Plot density of TRUE/FALSE distributions
performance()
Performance evaluation
posterior()
Posterior prosecution probabilities and odds

Post-hoc and intepretation

Functions to interpret the output

lambdaG_visualize()
Visualize the output of the LambdaG algorithm
concordance()
Qualitative examination of evidence

Optional advanced functions for analysis

Typically only needed in special cases

vectorize()
Vectorize data
most_similar()
Select the most similar texts to a specific text

Data

Sample dataset for testing

enron.sample
Enron sample